Notes
You will find some handwritten notes which give detailed examples and explanation on some of my papers.
2. The extended delta conjecture
3.1-2. Schiffmann algebra
3.3. Action of the Schiffmann algebra on symmetric functions
3.4. GL_l characters and the shuffle algebra
4.1. Distinguished Negut elements
4.2. Commutator identity
4.3. Symmetry identity for D_b and E_a
4.4. Shuffling the symmetric function side of the extended delta conjecture
5.1. Reformulation of the combinatorial side
5.2. Definition of N_beta/alpha
5.3. Transforming the combinatorial side
6.1 . Main Theorem reformulation
6.2. LLT series
2.1. Symmetric functions and partition diagrams
2.2. LLT polynomials
3.1. The shuffle algebra
3.2. The shuffle to Schiffmann algebra isomorphism
3.3. Grading
3.4. Catalanimals and their cubs
3.5. Catalanimals and the nabla operator
4.1. Tame Catalanimals
4.2. Cuddly Catalanimals
5.1-2. Leading term and coproduct on the shuffle algebra
5.3. Coproduct formula for cuddly Catalanimals
6. Principal specialization and evaluating cubs
7.1. Definition of the LLT Catalanimals ((1,0)-case)
7.2. Statistics on nu
7.3. Proof of cuddliness and determining the Cubs
8.1. m-stretching
8.2. Definition of the LLT Catalanimals ((m,n)-case)
8.3. Determining the cubs
2.1. Symmetric functions conventions
2.2. LLT polynomials
2.3 Catalanimals
3.1. Dens and nests
3.2. Parametrizing nests
3.3. Combinatorial statistics associated with nests
3.4. LLT polynomial associated with a nest
3.5. Main theorem
3.6. The single path case
4.1. LW dens
4.2. An (m,n) Loehr-Warrington formula
4.3. Comparison with the original Loehr-Warrington formula
5.1. Hecke algebra and root system preliminaries
5.2. Semi-symmetric Hall-Littlewood polynomials
5.3. Orthogonality
5.4. LLT series
5.5. Relation between LLT series and LLT polynomials
6.1. Cauchy identity
6.2. Winding permutations
7.1. Stable form of the main theorem
7.2. Proof of the main theorem
​